a new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
Authors
abstract
in this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of tvd (total variation diminishing) of the solution, is proposed. this scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. schemes preserving the essential physical property of tvd are of great importance in practice. such schemes are free of spurious oscillations around discontinuities. numerical results for burger's equation is presented. comparison of numerical results with a classical difference scheme is given.
similar resources
A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
full textA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
full textA Genuinely High Order Total Variation Diminishing Scheme for One-Dimensional Scalar Conservation Laws
It is well known that finite difference or finite volume total variation diminishing (TVD) schemes solving one-dimensional scalar conservation laws degenerate to first order accuracy at smooth extrema [8], thus TVD schemes are at most second order accurate in the L1 norm for general smooth and non-monotone solutions. However, Sanders [12] introduced a third order accurate finite volume scheme w...
full textImplicit Finite Difference Methods for Hyperbolic Conservation Laws
Hyperbolic conservation laws (HCLs) are a class of partial differential equations that model transport processes. Many important phenomena in natural sciences are described by them. In this paper we consider finite difference methods for the approximation of HCLs. As HCLs describe an evolution in time, one may distinguish explicit and implicit schemes by the corresponding time integration mecha...
full textThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
full textNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
full textMy Resources
Save resource for easier access later
Journal title:
computational methods for differential equationsجلد ۲، شماره ۲، صفحات ۹۱-۹۸
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023